Rabu, 22 April 2009

Manfaat Rumus Berhitung Cepat Matematika

Saya senang mengoleksi berbagai macam teknik berhitung cepat – aritmetika cepat. Beberapa rumus cepat ini saya peroleh dari guru-guru matematika saya. Sebagian yang lain saya peroleh dari membaca literatur. Bagian terpenting dari rumus cepat ini saya peroleh sendiri melalui ketekunan meneliti.

Berhitung cepat bukan berarti tidak boleh menggunakan kalkulator. Pun bukan berarti tidak boleh memanfaatkan komputer. Orang yang ahli menggunakan kalkulator dan komputer juga tidak dilarang belajar berhitung cepat. Jadi, kita tidak perlu mempertentangkan berhitung cepat dengan mesin hitung cepat.

Banyak manfaat dari belajar berhitung cepat. Salah satu manfaat terpenting adalah menjadi lebih kreatif. Orang yang memiliki banyak koleksi teknik berhitung cepat akan selalu terbuka pada ide-ide kreatif baru. Tokoh-tokoh besar dunia banyak yang menggemari permainan berhitung cepat.

Gauss, tokoh besar matematika, terkenal sebagai orang yang mengatakan:
”Mathematic is queen of science. And queen of mathematic is arithmetic.”
“Matematika adalah ratu ilmu pengetahuan. Dan ratu matematika adalah aritmetika.”

Anda yang pernah mempelajari matematika perguruan tinggi pasti mengenal Gauss. Apalagi Anda yang belajar di teknik elektro atau fisika pasti banyak mempelajari teori Gauss. Khususnya ketika mempelajari teori medan.

Gauss terkenal sebagai kalkulator berjalan – mesin hitung berjalan. Ia dapat melakukan perhitungan cepat hanya dalam kepala. Tanpa alat bantu apa pun. Gauss mengejutkan orang-orang di sekitarnya, bahkan gurunya, ketika menyelesaikan sebuah perhitungan hanya beberapa detik. Sementara orang-orang pada umumnya membutuhkan waktu lebih dari setengah jam.

Richard Feynman adalah peraih nobel fisika yang menggemaskan. Feynman memiliki hobi terus memainkan angka-angka. Ia dikenal juga sebagai kalkulator berjalan. Bahkan ia bisa menghitung nila log 2 sampai ketelitian 7 digit di belakang koma hanya dalam beberapa detik. Ketika ditanya oleh orang-orang bagaimana cara melakukannya, Feynman menjawab, ”Saya telah menghafalnya semalam.” Itulah gaya Feynman.

Berikut ini contoh perhitungan yang disukai Feynman. Saya mengenal sebelumnya dari Trachtenberg.

542 = 2916

552 = 3025

562 = 3136

572 = … … …

582 = … … …

Cobalah mengisi titik-titik di atas degan menebaknya. Anda pasti bisa langsung menebaknya. Berhasil? Coba lagi yang ini:

592 = … … …

512 = 2601

522 = … … …

532 = … … …

Tentu kita dapat menghitungnya dengan cara seperti biasa. Kita juga dapat menyelesaikannya dengan kalkulator. Tetapi apa kreatifnya? Apa asyiknya? Ini lah cara asyiknya!

542 = 2916

29 kita peroleh dari 25 + 4

16 kita peroleh dari 42

562 = 3136

31 kita peroleh dari 25 + 6

36 kita peroleh dari 62

572 = 3249

32 kita peroleh dari 25 + 7

49 kita peroleh dari 72

Bagi Anda yang akan menempuh UN, SPMB, dan UMPTN 2008, teknik berhitung cepat juga dapat membantu Anda. Anda juga dapat mengembangkan teknik berhitung cepat sendiri sesuai kebutuhan Anda. Tadinya saya akan menulis teknik berhitung cepat limit dengan teorema L’Hospital. Tapi saya khawatir akan menjadi terlalu panjang. Mohon doanya agar saya dapat menulis teorema L’Hospital pada kesempatan berikutnya.

Cobalah bermain-main dengan teknik berhitung cepat!
Rasakan asyiknya!
Jaga tetap open mind!


Bagaimana menurut Anda?

Permainan Aljabar (AlKhawaritzmi): Mengubah Rumus Abstrak Menjadi Tebak-tebakan

Yang kusuka dari ibuku adalah dia selalu antusias dengan pengetahuan baru. Waktu itu ia habis membaca buku (atau majalah) anak-anak. Raut wajahnya berubah menjadi sangat ceria. Dia mengumpulkan anak-anaknya.

”Salam, coba kamu bayangkan sebuah angka! Sudah?” tanya ibuku.

”Sudah,” kata Salam.”Kalikan angka kamu tadi dengan 2. Sudah?”

”Ya, sudah.””Tambahkan hasilnya dengan 4. Sudah?”

”Bagilah hasilnya dengan 2. Sudah?”

”Ya, sudah.”

”Berapa hasilnya sekarang?”

”Sembilan.”

”Berarti angka yang kamu bayangkan pertama adalah 7. Betulkan?”

”Iiiih….Mama kok bisa sih?”

”Bisa dong, Mama kan hebat!”

Terjadilah dialog seru antara mereka. Adik-adikku yang masih kecil-kecil ikut nimbrung dalam diskusi tersebut.

Saya kagum terhadap ibu – makin tambah cinta lagi deh. Tentu saya sudah tahu permainan itu sebelumnya. Bahkan saya memiliki segudang permainan semacam itu.

Teknik Berhitung Perkalian Cepat dari Pangeran Aritmetika dan Pangeran Geometri

Pangeran Aritmetika riang gembira. Karena Ar (panggilan akrab Pangeran Aritmetika) menemukan sebuah ide tentang aritmetika.

“Dik Ge, ini Kakak menemukan cara cepat berhitung perkalian,” ujar Ar kepada Ge (panggilan akrab Pangeran Geometri).
“Apaan tuh…?” Pangeran Geometri menimpali.
“Coba kamu hitung 21×41 = ….?”
“Baik…!” jawab Ge sambil mencari kalkulator.
“Hei…hei…Tidak perlu pakai kalkulator!” kata Ar.
“Mana bisa?”
“Pasti bisa.”
“Aku cari kertas sama pensil dulu deh…” kata Ge.
“Ini juga tidak perlu kertas dan pensil!”

“Ini Kak Ar ajari….

Bayangkan perkalian bersusun
21
41
—x

2 x 4 = ….berapa?”
” 8, ” jawab Ge
“(2×1)+(1×4) = …berapa?”
“Hmmm….2+4…= 6.”
“1 x 1 = ….berapa?”
“Tentu 1,” jawab Ge.

“Jadi jawabannya adalah 8…6….1 yaitu = 861,” kata Pangeran Aritmetika.
“Hanya begitu?” Pangeran Geometri kagum.

“Kak Ar memang hebat!”
“Kak Ar juga yakin Dik Ge pasti juga hebat.”

“Saya akan mencoba menghitungnya pakai gambar. Boleh tidak?”
“Pasti boleh. Dik Ge kan memang hebat dalam gambar-menggambar.”

“Gambarkan sebuah persegi panjang…”perintah Pangeran Geometri.
“Bentar-bentar…Kak Ar ambil pensil sama kertas dulu,” jawab Pangeran Aritmetika.

“Tidak perlu kertas dan pensil Kak…” Dik Ge mencegah.
“Boleh…jadi kita main-main imajinasi saja,” Kak Ar setuju.

“Bayangkan gambar persegi panjang dengan ukuran panjang 20 + 1…
Sisi yang 20 warnanya merah.
Sisi yang 1 warnanya biru.”

“Baik…Kak Ar sudah terbayang…”

“Sekarang bayangkan lebarnya adalah 40 + 1…
Sisi yang 40 berwarna merah.
Sisi yang 1 berwarna biru.”

“Baik…aku paham.”

“Berapa luas yang merah x merah?”
“Maksudnya?”
“Maksudnya sisi panjang yang berwarna merah x sisi lebar yang berwarna merah.”
“Hmmm….20×40 = 800,” jawab Ar.

“Berapa luas warna merah x biru?”
“Hmmm….20×1= 20…dan 1×40 = 40. Dijumlahkan menjadi 60,” jawab Ar.

“Berapa luas biru x biru?”
“1 x 1 = 1.”

“Jadi berapa luas seluruhnya?”
“800 + 60 + 1 = 861… Hebat kamu Ge…!” seru Pangeran Aritmetika.
“Siapa dulu kakaknya dong….”

Mereka tertawa bersama-sama… bergembira.

“Di mana adik kecil kita, Pangeran Aljabar?”
“Oh…ya kok tidak kelihatan dari tadi.”
“Kita cari yuk…Pasti Dik Al punya cara tersediri.”

Pangeran Aritmetika berjalan riang gembira bersama Pangeran Geometri ingin mencari adik kecilnya Pangeran Aljabar yang akrab dipanggil dengan Al.

Salam hangat…

Metode Belajar Matematika: Cara Menguasai Rumus Cepat Matematika

“Bagaimana cara belajar matematika yang benar?”
“Belajar matematika adalah belajar hidup. Matematika adalah jalan hidup.”

Trachtenberg mempertaruhkan jiwanya menentang Hitler. Trachtenberg, setelah menyelami prinsip-prinsip matematika, menyimpulkan bahwa prinsip kehidupan adalah keharmonisan. Peperangan yang terus berkobar, menyulut kebencian tidak sesuai dengan prinsip-prinsip matematika. Matematika adalah keindahan.

Atas penentangannya ini, Hitler menghadiahi Trachtenberg hukuman penjara. Bagi Trachtenberg, perjara bukan apa-apa. Di dalam penjara, dia justru memiliki kesempatan memikirkan matematika tanpa banyak gangguan. Karena sulit mendapatkan alat tulis-menulis, Trachtenberg mengembangkan pendekatan matematika yang berbasis mental-imajinasi.

Seribu tahun sebelum itu, AlKhawaritzmi mengembangkan disiplin matematika baru: aljabar. AlKharitzmi beruntung hidup dalam lingkungan agama Islam yang kuat. Ajaran Islam, secara inheren, menuntut keterampilan matematika tingkat tinggi. Misalnya, Islam menetapkan aturan pembagian waris yang detil. Pembagian waris sistem Islam melibatkan banyak variabel matematis. Variabel-variabel yang beragam ini menantang penganut Islam – termasuk AlKhawaritzmi – untuk mencari pemecahan yang elegan.

Pemecahan terhadap sistem persamaan yang melibatkan banyak variabel ini membawa ke arah disiplin baru matematika: aljabar. AlKhawaritzmi menulis buku khusus tentang aljabar yang sangat fenomenal. Buku yang berjudul Aljabar ini menjadi panutan bagi matematikawan seluruh dunia. Sehingga nama AlKhawaritzmi menjadi dikenal sebagai Aljabar AlKhawaritzmi (Algebra Algorithm).

Sistem kalender Islam yang berbasis pada komariah (bulan, lunar) memberikan tantangan tersendiri. Penetapan awal bulan menjadi krusial di dalam Islam. Berbeda dengan kalender syamsiah (matahari, solar). Dalam kalender syamsiah, kita tidak begitu sensitif apa berbedaan tanggal 1 Juni dengan 2 Juni. Tetapi pada sistem komariah, perbedaan 1 Ramadhan denga 2 Ramadhan berdampak besar.

Itulah sebabnya, astronomi Islam dapat maju lebih awal. Astronomi memicu lebih berkembangnya teori trigonometri. Aturan sinus, cosinus, dan kawan-kawan berkembang pesat di tangan para astronom Islam waktu itu.

Ajaran agama Islam adalah jalan hidup. Untuk bisa melaksanakan ajaran Islam diperlukan matematika. Matematika menjadi jalan hidup.

Sehebat itukah peran matematika?
Haruskah kita mengambil matematika sebagai jalan hidup?

Tidak selalu! Tidak semua orang perlu mengambil matematika sebagai jalan hidup. Tidak harus semua orang meniru AlKhawaritzmi dan Trachtenberg.

Beberapa orang belajar matematika hanya untuk kesenangan. Beberapa orang yang lain belajar karena kewajiban. Ada pula yang belajar matematika agar naik jabatan. Ada juga agar lulus UN, SPMB, UMPTN. Ada juga untuk menjadi juara.

Masing-masing tujuan, berimplikasi kepada cara belajar matematika yang berbeda. Misalnya bila Anda belajar matematika untuk kepentingan lulus UN, SPMB, UMPTN 2008 akan berbeda dengan belajar untuk memenangkan olimpiade matematika.

Matematika UN, SPMB, UMPTN 2008 hanya menerapkan soal pilihan ganda. Implikasinya Anda hanya dinilai dari jawaban akhir Anda. Proses Anda menemukan jawaban itu tidak penting. Jadi Anda harus memilih siasat yang cepat dan tepat.

Gunakan berbagai macam rumus cepat dalam matematika. Rumus cepat ampuh Anda gunakan untuk UN, SPMB, UMPTN. Tetapi rumus cepat matematika tidak akan berguna untuk olimpiade atau kuliah kalkulus kelak di perguruan tinggi. Anda harus sadar itu.

Contoh rumus cepat matematika yang sering (hampir selalu) berguna ketika UN, SPMB, UMPTN adalah rumus tentang deret aritmetika.

Contoh soal:
Jumlah n suku pertama dari suatu deret adalah Sn = 3n^2 + n. Maka suku ke-11 dari deret tersebut adalah…

Tentu ada banyak cara untuk menyelesaikan soal ini.

Cara pertama, tentukan dulu rumus Un kemudian hitung U11. Cara ini cukup panjang. Tetapi bagus Anda coba untuk meningkatkan keterampilan dan pemahaman konsep deret. Rumus Un dapat kita peroleh dari selisih Sn – S(n-1) .

Cara kedua, sedikit lebih cerdik dari cara pertama. Kita tidak perlu menentukan rumus Un. Karena kita memang tidak ditanya rumus tersebut. Kita langsung menghitung U11 dengan cara menghitung selisih
S11 – S10 = U11
[3(11^2) + 11] – [3(10^2) + 10]
= 3.121 – 3.100 + 11 - 10
= 3.21 + 1
= 64

Cara ketiga, adalah rumus matematika paling cepat dari kedua rumus di atas. Tetapi sebelum menerapkan cara ketiga, kita harus memahami konsepnya terlebih dahulu dengan baik.

Are you ready?
Bentuk baku dari n suku pertama deret aritmetika adalah
Sn = (b/2)n^2 + k.n
Un = b(n-1) + a
a = S1 = U1

Anda harus pahami konsep di atas dengan baik. Cobalah untuk beberapa soal yang berbeda-beda. Tanpa pemahaman konsep yang baik, rumus cepat ini akan berubah menjadi rumus berat.

Dengan hanya melihat soal (tanpa menghitung di kertas) bahwa
Sn = 3n^2 + n

Kita peroleh
b = 6 (dari 3 x 2)
a = 4 (dari S1 = 3 + 1)

U11 = 6.10 + 4 = 64 (Selesai)

Semua perhitungan di atas dapat kita lakukan tanpa menggunakan alat tulis. Semua kita lakukan hanya dalam imajinasi kita. Ulangi beberapa kali. Anda pasti akan menguasainya dengan baik.

Trik untuk menguasai rumus cepat matematika adalah kuasai pula rumus standarnya – rumus biasanya. Dengan menguasai dua cara ini Anda akan semakin terampil menggunakan rumus cepat matematika.

Bagaimana pendapat Anda?

Rumus Cepat Matematika (Aljabar) Menjadi Idaman

Anak-anak sangat menyukai matematika. Mereka minta terus dikasih soal. Saya sendiri heran, mengapa mereka begitu semangat?

“Lagi Pak. Kasih soal lagi Pak!” anak-anak menantang saya.
“306 x 303 = …” saya keluarkan soal.
“Sembilan…dua tujuh…delapan belas!” jawab mereka ramai-ramai.
“Maksudnya berapa?”
“92718”
“Betul!”

Anak-anak yang terdiri dari kelas 3 sampai kelas 5 SD itu senang menemukan cara berhitung cepat perkalian ratusan kali ratusan. Bagi mereka itu adalah rumus cepat matematika yang diidam-idamkan.

Anak-anak SMA yang menjelang UN, SPMB, dan UMPTN 2008 juga tidak kalah semangat. Jika mereka memperoleh rumus matematika cepat untuk UN, SPMB, dan UMPTN maka matanya langsung berbinar-binar. Wajahnya berseri-seri.

Saya sering mengatakan kepada mereka,
”Maukah kalian dapat soal bonus?”
”Apa itu soal bonus?”
”Soal UN, SPMB, atau UMPTN yang selalu dapat kamu selesaikan dengan mudah.”
”Ya maulah…”
”Limit.”

Limit kan sangat abstrak dan sulit? Bagaimana bisa dikatakan sebagai bonus? Itulah intinya. Limit adalah ide fundamental dalam kalkulus. Karena limit sangat kaya akan variasi dan abstrak bagi orang awam, maka limit hanya diperkenalkan bagian dasar saja untuk anak tingkat SMA. Jadi limit tingkat SMA tentu yang mudah-mudah saja. Limit adalah bonus.

Sekedar contoh rumus cepat untuk limit. Kadang orang menyebut rumus cepat sebagai trik cepat, fastest solution, king of fastest, atau rumus sesat. Boleh-boleh saja.

Soal berikut ini sangat mudah. Sudah pernah diujikan untuk tes masuk ITB sejak tahun 70-an. Tetapi entah mengapa, soal limit tipe ini tetap sering diujikan sampai sekarang. Benar-benar bonus untuk kita.

Untuk limit x menuju 0 hitunglah

(tg5x)/(sin3x) = …

Bagi orang awam jawabannya sangat mudah yaitu 5/3.
Apakah Anda yakin itu jawaban yang benar?
Banyak anak-anak karena ragu, karena dirasa terlalu mudah, malah tidak mau menjawab dengan 5/3.

Mari kita diskusikan!

Untuk membahasnya kita perlu ke dasar-dasar limit trigonometri. Sudah banyak dibuktikan dalam buku-buku bahwa untuk limit x menuju 0 berlaku:

(sinx)/x = 1;
(tgx)/x = 1;

Biasanya anak-anak harus hafal rumus di atas. Bagi saya rumus ini adalah rumus cepat limit. Tetapi rumus ini beruntung. Ia tidak pernah disebut sebagai rumus sesat. Ia mendapat gelar kehormatan sebagai rumus dasar limit trigonometri.

Dengan rumus dasar limit trigonometri ini kita akan memecahkan

(tg5x)/(sin3x) =
[(tg5x)(5x/5x)]/[(sin3x)(3x/3x)] =
[(tga)(a/a)]/[(sinb)(b/b)]

dengan a = 5x dan b = 3x;
gunakan rumus dasar trigonometri:

[1.a]/[1.b] =
[5x]/[3x] =
= 5/3 (Selesai)

Kita peroleh jawaban 5/3 sesuai tebakan awal kita.
Apakah kita selalu boleh melakukan tebakan semacam itu?
Boleh.

Tebakan ini sah. Kita mendasarkan pada rumus dasar limit trigonometri dengan menambah satu langkah implikasi.

Karena (sinx)/x = 1 maka (sinx) = x;
karena (tgx)/x = 1 maka (tgx) = x.

Jadi rumus dasar trigonometri yang kita hafal adalah

sinx = x;
tgx = x.

Dengan sedikit mengubah cara pandang ini akan membawa keberuntungan besar pada UN, SPMB, UMPTN 2008. Siswa-siswa SMA, mestinya tidak asing dengan cara pandang ini. Kita telah memakai cara pandang ini ketika menghitung interferensi gelombang Young dalam fenomena fisika.

Jadi bila kita terapkan ke soal di atas:
(tg5x)/(sin3x) = 5x/3x = 5/3 (Selesai).

Rumus cepat di atas akan semakin bernilai bila bentuk soalnya semakin rumit seperti
(2x + tg3x)/(x + sin7x) =…
(2x + 3x)/(x + 7x) = 5/8 (Selesai).

Rumus cepat matematika bukan hal baru. Dalam sejarah matematika tercatat bahwa masyarakat memang mengidolakan rumus-rumus cepat matematika. Saat itu rumus-rumus cepat tidak dipandang sebagai rumus sesat. Pun yang menguasai rumus-rumus cepat adalah para ahli matematika itu sendiri.

Pada tahun 1535 Tartagtila mengikuti pertandingan berhitung cepat. Ia melawan murid dari seorang profesor matematika ternama. Tartagtila tidak begitu dikenal di dunia matematika waktu itu. Ia mempelajari matematika nyaris secara mandiri. Tetapi Tartagtila memiliki keistimewaan: ia memiliki rumus cepat untuk memecahkan persamaan polinom pangkat 3.

Aturan pertandingan itu sederhana. Masing-masing peserta menuliskan 30 soal matematika. Kemudian soal itu diserahkan kepada lawan untuk diselesaikan. Siapa saja yang mampu menyelesaikan soal lebih awal dan benar maka ia sebagai pemenang.

Setelah 2 jam pertandingan berlangsung. Tartagtila berhasil menyelesaikan seluruh 30 soal yang dihadapinya. Sedangkan lawannya belum mampu menyelesaikan soal satu pun. Tartagtila mampu menyelesaikannya karena menggunakan rumus cepat. Sedangkan lawannya tidak memiliki rumus cepat.

Tartagtila meraih berbagai kehormatan setelah pertandingan itu.

Rumus cepat adalah terhormat.

Bagaimana jika terjadi komersialisasi rumus cepat? Saya tidak tahu jawabannya.

O iya, saya jadi ingat dengan berhitung cepat yang paling awal tadi bagaimana caranya?
Bagaimana seorang anak kecil dapat menghitung 306 x 303 luar kepala?

Caranya mudah!
Bagi anak SMP sudah mengenal bahwa
(x+2)(x+3)=
x.x + (2x+3x) + 2.3 =

Mirip dengan itu caranya:
306 x 303 =
9 (dari 3×3)
27 (dari 6×3 + 3×3)
18 (dari 6×3)
Kita peroleh jawaban 92718.

Contoh lain
207 x 304 = …
6 (dari 2×3)
29 (dari 7×3 + 2×4)
28 (dari 7×4)
Kita peroleh 62928.

Bagaimana pendapat Anda?

Rahasia Rumus-rumus “Cepat” Matematika

Dulu, ketika saya masih baru menjadi mahasiswa baru tingkat pertama, saya berkenalan dengan salah seorang mahasiswa baru lainnya yang di kemudian hari menjadi teman baik saya. Ketika awal perkenalan, kami pun ngobrol kesana-kemari. Tanya sana-tanya sini. Jawab sana, jawab sini. Hingga ia pun akhirnya bercerita bahwaa nilai tes Matematika Dasar-nya, yaitu salah satu mata pelajaran yang diujikan di UMPTN*, adalah 100 alias benar semua.

Mendengar ceritanya tersebut, saya pun terkagum-kagum dibuatnya. Dalam pikiran saya, saya berkesimpulan “Wah ia pasti orang yang sangat pandai”. Rasa kagum saya mendorong rasa ingin tahu saya tentang pengetahuannya dalam matematika. Akhirnya, dalam masa awal perkenalan itu, saya ajak ia ngobrol tentang matematika yang sudah pernah kami pelajari ketika semasa SD sampai SMA dulu.

Dari obrolan tersebut, saya jadi tahu, ternyata ia benar-benar luas pengetahuan tentang matematika yang sudah dipelajarinya. Hingga akhirnya, mungkin untuk menunjukkan kepiawaiannya, ia mengajak saya adu cepat mengerjakan soal matematika.

Mendapat tantangan itu, sebenernya saya ngeper juga. Karena saya merasa tak sepandai dirinya. Namun, karena ini namanya juga bukan lomba dan bukan apa-apa, saya sih mau saja waktu itu. Soal-soal pun dipilih secara acak dari buku kumpulan soal-soal latihan tes UMPTN* dan EBTANAS** beberapa tahun sebelumnya yang masih rajin ia bawa ke mana-mana. Kemudian, adu cepat menyelesaikan soal matematika pun dimulai.

Bagaimana hasilnya? Siapa yang tercepat?

Ternyata benar, dalam beberapa menit saja, teman saya itu berhasil menyelesaikan semua soal yang sudah dipilih tadi (karena yang dipilih cuma 3 soal sih). Dan ia keluar sebagai yang tercepat, menjadi pemenang. Sedangkan saya, satu soal pun belum mampu saya selesaikan. Waktu itu, saya terlalu berkutat dengan soal nomor pertama yang lumayan sukar untuk ukuran saya waktu itu. Walau sudah dengan segenap kemampuan saya berusaha menyelesaikannya, tapi ternyata, sampai waktu habis belum ketemu juga. Saya pun mengakui kelebihan dan kehebatannya.

Dengan sedikit malu-malu, saya bertanya padanya tentang soal yang belum bisa saya selesaikan tersebut. Sambil saya tanyakan pula kenapa ia begitu cepat bisa menyelesaikan soal-soal tersebut. Soal yang waktu itu belum bisa saya selesaikan adalah seperti berikut ini.

Soal: Bila a + 1/a = 5, maka nilai dari a3 + 1/a3 =…

Dengan cepat teman saya itu pun menyelesaikan soal tersebut seperti berikut ini:

a3 + 1/a3 = (a + 1/a)3 – 3a.1/a(a + 1/a) = 53 – 3(5) = 125 – 15 = 110.

Melihat cara penyelesaiannya, saya hanya bisa melongo waktu itu. “Cuma satu baris? Padahal saya mencoba menyelesaikannya berbaris-baris, dan belum ketemu juga”, itu yang ada di pikiran saya. Kemudian, saya pun bertanya ke teman saya itu, kenapa cara pengerjaannya seperti itu?

Dengan senang hati, ia pun menjelaskan ke saya. Ia katakan bahwa, soal semacam tersebut dapat dengan mudah diselesaikan dengan rumus “cepat” berikut ini.

a3 + b3 = (a + b)3 – 3ab(a + b) ………………………………..(1)

Dengan mengganti b dengan 1/a, katanya, maka soal tadi dapat diselesaikan dengan cepat seperti yang sudah dikerjakannya tadi.

Saya yang tak terbiasa menggunakan rumus “cepat” ketika di SMA dulu, penasaran ingin tahu alasan kenapa rumus “cepat” tersebut bisa dipakai. Tapi sayang, teman saya itu tak memberi tahu saya. Malahan ia menambah lagi rumus cepat yang sudah ia ketahuinya, yaitu:

a3 b3 = (a – b)3 + 3ab(a – b)……………………………….(2)

Akhirnya, ngobrol-ngobrol pun beres. Ia bergegas pulang menuju kost-kost-annya. Saya pun begitu, pulang dengan rasa penasaran yang mengganjal.

Di kost-kost-an, dengan penuh rasa penasaran ingin tahu, saya pun mengutak-atik rumus “cepat” yang telah ia gunakan tersebut. Setelah beberapa waktu lamanya, akhirnya, terpecahkan juga rahasia rumus “cepat” yang dipakai teman saya tersebut. Saya berhasil menelusuri asal-muasal rumus “cepat” tersebut, berhasil menguak rahasianya. (Duh rasanya begitu senang sekali, tak bisa saya ekspresikan dengan kata-kata).

Hasil penelusuran saya tersebut, setelah saya rapikan, seperti berikut ini.

(a + b)3 = (a + b)2(a + b)

= (a2 + 2ab + b2)( a + b)

= a3 + a2b + 2a2b + 2ab2 + b2a + b3

= a3 + b3 + 3a2b + 3ab2

= a3 + b3 + 3ab (a + b)

Jadi, (a + b)3 = a3 + b3 + 3ab (a + b).

Sehingga, a3 + b3 = (a + b)3 – 3ab (a + b). Rumus “cepat” (1) dapat saya buktikan kebenarannya. Kemudian, dengan cara serupa, saya pun berhasil menelusuri asal-muasal rumus “cepat” (2).

Walaupun apa yang telah saya lakukan tersebut sederhana, tapi bagi ukuran saya waktu itu adalah sesuatu yang menggembirakan hati, menyenangkan pikiran, dan memuaskan dahaga keingin-tahuan saya.

Sejak saat itu, bila ada rumus-rumus “cepat” yang saya temui di buku-buku bimbingan tes, saya pun terpacu untuk menelusuri asal-muasalnya. Dengan cara seperti itu, saya seringkali berhasil memecahkan rahasia rumus-rumus “cepat” yang selama ini beredar luas di kalangan siswa yang mengikuti bimbingan test.

Baiklah, segitu dulu saja ceritanya ya…, lain kali insya Allah saya akan membahas baik-buruknya penggunaan rumus “cepat” (Ada satu cerita yang sangat menggelikan tentang hal ini. Mau tahu? Silakan tunggu di postingan mendatang…). Sampai di sini dulu ya…, mudah-mudahan bermanfaat.

Sebagai bahan latihan untuk Anda, cobalah telusuri asal-muasal rumus-rumus “cepat” berikut ini.

  1. Persamaan garis yang melalui titik (0, a) dan (b, 0) adalah ax + by = ab.
  2. Perhatikan gambar berikut. Panjang PQ dapat ditentukan dengan mudah, yaitu:

    PQ = (AP. DC + DP. AB)/(AD)

rumus-cepat.jpg


Fungsi Limit Trigonometri

KETENTUAN

Untuk x <<< ( x
® 0 ) maka sin x » x
(x <<<> » setara )

l i m sin x = 1 l i m tg x = 1
x ® 0 x
x ® 0 x

l i m x = 1 l i m x = 1
x ® 0 sin x
x ® 0 tg x

PERLUASAN

l i m sin ax = a/b l i m tg ax = a/b
x ® 0 bx
x ® 0 bx


l i m ax = a/b l i m ax = a/b

x ® 0 sin bx
x ® 0 tg bx


l i m sin ax = a/b l i m tg ax = a/b
x ® 0 sin bx
x ® 0 tg bx



l i m sin ax = a/b l i m tg ax = a/b
x ® 0 tg bx
x ® 0 sin bx

Rumus-rumus trigonometri yang sering digunakan untuk merubah fungsi:

cos x = sin (90° - x)
ctg x = tg (90° - x)
sin ax = 2 sin ½ax cos ½ax

cos ax = 1- 2 sin² ½ax
cos²x = 1 - sin²x



HAL-HAL KHUSUS

l i m axm + bxm-1 + .... =
x ® ¥ pxn + qxn-1 + ...
¥ untuk m > n ;
a/p untuk m =n ;
0 untuk m <>

l i m Öax2 + bx + c - Ödx2 + ex + f
x ® ¥
¥ untuk a > d ;
b-e untuk m =n ;
2Öa
-¥ untuk a <>

Bila salah satu suku belum berbentuk tanda akar maka dibentuk dengan cara mengkuadratkan kemudian menarik tanda akar.


DALIL L'HOSPITAL

Jika fungsi f dan g masing-masing terdifferensir pada titik x= a
dan f(a) = g(a) = 0 atau f(a) = g(a) = ¥ maka

l i m f(x) = l i m f(x)
x ® ¥ g(x) x ® a g(x)


CONTOH LIMIT FUNGSI ALJABAR


1. l i m x2 - 5x + 6 = (3)2 - 5(3) + 6 = 0
x ® 3

2. l i m 3x - 2 = ¥ (*) Uraikan
x ® ¥ 2x + 1 ¥

x(3 - 2/x) = 3 - 2/x = 3 - 0 = 3
x(2 - 1/x) 2 + 1/x 2 - 0 2

atau langsung gunakan hal khusus

3. l i m x2 - x - 1 = ¥ (*) Uraikan
x ® ¥ 10x + 9 ¥

x(x - 1 - 1/x) = x - 1 - 1/x = ¥ - 1 - 0 = ¥ =¥
x(10 - 9/x) 10 + 9/x 10 + 0 10

atau langsung gunakan hal khusus


4. l i m x2 - 3x + 2 = 0 (*) Uraikan
x ® 2 x2 - 5x + 6 0

(x - 1)(x - 2) = (x - 1) = 2 - 1 = -1
(x - 3)(x - 2) = (x - 3) = 2 - 3

atau langsung gunakan hal khusus ® Differensial


5. l i m x3 - 3x2 + 3x - 1 = 0 (*) Uraikan
x ® 1 x2 - 5x + 6 0

(x - 1)3 = (x - 1)2 = (1 - 1)2 = 0
(x - 1) (x - 5) (x + 5) (1 + 5) 6

atau langsung gunakan hal khusus ® Differensial



6. l i m Ö2 + x - Ö2x = 0 (*) Hilangkan tanda akar dengan
x ® 2 x - 2 0 mengalikan bentuk sekawan

(x - 1)3 = (x - 1)2 = (1 - 1)2 = 0 = 0
(x - 1) (x - 5) (x + 5) (1 + 5) 6

atau langsung gunakan hal khusus ® Differensial



7. l i m (3x - Ö9x2 + 4x) = ¥ - ¥ (*) Hilangkan tanda akar
x ® ¥

l i m (3x - Ö9x2 + 4x ) = é 3x - Ö9x2 + 4x ù = (*) Hilangkan tanda
x ® ¥ ë 3x - Ö9x2 + 4x û akar

l i m (9x2 - (9x2 + 4x) = l i m -4x =
x ® ¥ 3x + Ö(9x2 + 4x) x ® ¥ 3x + 3x Ö[1+(a/9x)]

l i m -4 = -4 = -2
x ® ¥ 3 + 3Ö(1 + 0) 6 3

atau langsung gunakan hal khusus

CONTOH LIMIT FUNGSI TRIGONOMETRI

1. l i m sin 2x = 0 (*)
x ® 0 tg 3x 0

sin 2x = 3x 2 = 1 . 1 . 2 = 2
2x tg 3x 3 3 3

2. l i m 1 - cos 2x = 0
x ® 0 sin 2x 0

1 - (1 - 2 sin² 2x) = 2 sin² x = sin x = tg x = 0
2 sin x cos x 2 sin x cos cos x

3. l i m 1 - cos x = 0
x ® 0 3x² 0

2 sin² (½x) = sin (½x) . sin (½x) = 1 . 1 . 1 = 1
3 . 4 . (½x) 6 (½x) (½x) 6 6

atau langsung gunakan hal khusus ® Differensial

4. l i m sin x - sin a = 0 (*)
x ® 0 x - a 0

2 cos ½(x+a) sin ½(x-a) = cos ½(x+a) . sin ½(x-a) =
x - a ½ (x - a )

cos ½(x+a) . 1 = cos ½(a+a) . 1 = cos a

atau langsung gunakan hal khusus ® Differensial

Cara Menyelesaikan Persamaan Kuadrat

Bentuk umum : ax² + bx + c = 0

x variabel; a,b,c konstanta ; a ¹ 0

Menyelesaikan persamaan kuadrat berarti mencari harga x yang memenuhi persamaan kudrat (PK) tersebut (disebut akar persamaan kuadrat). Suatu bilangan disebut akar dari suatu persamaan berarti bilangan tersebut memenuhi persamaan.

Andaikan x1 dan x2 adalah akar-akar persamaan kuadrat, maka x1 dan x2 dapat ditentukan dengan cara

  1. Memfaktorkan

    ax² + bx + c = 0 ® ax² + bx + c = 0 ® a (x + p/a) (x + p/a) = 0
    ®
    x1 = - p/a dan x2 = - q/a

    dengan p.q = a.c dan p + q = b

  2. Melengkapkan bentuk kuadrat
    persamaan kuadrat tersebut dibentuk menjadi
    (x + p)² = q² ® x + p = ± q
    x1 = q - p dan x2 = - q - p

  3. Rumus ABC
    ax² + bx + c = 0 ® X1,2 = ( [-b ± Ö(b²-4ac)]/2a

    bentuk (b² - 4ac) selanjutnya disebut DISKRIMINAN (D) sehingga
    sehingga X1,2 = (-b ± ÖD)/2a